目前世界范圍內漿和紙的產量和質量正不斷增長,若僅僅依靠提供的纖維原料和改進制漿造紙工藝來促進生產是不夠的,還必須研制和使用一些新型的過程分析儀器和傳感器。隨著近紅外光譜技術和光譜數據處理軟件的進展,為開發新型的過程分析儀器提供了新的途徑。下面介紹的NIR在制漿造紙過程中的應用,雖然絕大部分應用情況目前仍然局限于實驗室內,但將來的發展趨勢必定為現場分析和測控,實現從實驗室走向生產現場的轉變。
1.檢測紙頁涂料中的水分含量
在400~1100nm的范圍內,采用透過模式,分析涂料混合物中的水分含量。雖然,由于涂料中懸浮顆粒的存在使測量的重現性受影響,但是對于連續流動的涂料,卻可以避免這個問題,從而實現在線測量。
2.確定紙漿中針葉木的含量
在1100~2500nm的范圍內,采用反射模式,取兩個樣品分別用于校準實驗室測量值和在線測量值。雖然在線測量值的誤差比預期的要大,但是測量結果仍然表明NIR可以用于確定紙漿中的針葉木含量。
3.測量混合木漿的卡伯值
采用反射模式,取27個樣品在2180nm處用于標定曲線,9個樣品作為測試集,測量誤差為5.6%。雖然測量結果表明NIR可能用于測量混合木漿的卡伯值,但是測量誤差能否被工業過程所接受,還有待考究。
4.測量蒸煮鍋噴放管線中紙漿的Kno(卡伯值的對數)
在1100~2500nm的范圍內,采用反射模式,測量紙漿的Kno。在1672nm處進行一元線性回歸,測量誤差為1.0%;由于波長波動的影響,再引入1436nm進行多元線性回歸,使測量誤差下降為0.5%。
5.測量紙頁的水分和紙板的重量
采用反射模式,利用水在1940nm處的特征吸收測量紙頁中的水分;紙板重量的變化在2100~2500nm的范圍內表現明顯,在2346nm處進行一元線性回歸。結果表明,NIR對紙頁的水分和紙板的重量均很敏感。由于樣品本身的不均勻性,所以測量掃描時樣品的面積應該較大,以取平均值。
6.監測紙頁的樹脂層
采用反射模式,在1100~2500nm的范圍內分析樣品,結果發現,由于未經涂布的紙在1688nm、1766nm和2160nm無特征吸收,所以可以避開紙頁的影響。在2160nm標定曲線,誤差為0.7%。
7.監測紙漿棉短絨混合物的卡伯值
采用反射模式,在1100~2500nm的范圍內分析樣品,在1680nm進行一元線性回歸,誤差為1.2個卡伯值,標定的有效范圍為3.4~33.9個卡伯值。此結果對干、濕紙漿棉短絨混合物均適用。
8.檢測薄頁紙上的聚硅酮層含量
對8個聚硅酮濃度為0.69%~5.67%的薄紙頁樣品在1100~2500nm的范圍內進行掃描,在1744nm進行一元線性回歸,誤差為0.2%。
9.檢測木纖維中的蠟和苯酚樹脂含量
采用反射模式,在1100~2500nm的范圍內,分別對蠟的濃度為0.3%~2.4%的木纖維樣品和苯酚樹脂的濃度為1.3%~4.3%的木纖維樣品進行掃描。在2158nm處標定苯酚樹脂,誤差為0.4%;在1728nm處標定蠟,誤差為0.1%。
10.檢測干木漿中的木素含量
采用反射模式,在1100~2500nm的范圍內,對木素濃度為5.7%~33.6%的木漿進行掃描。在2172nm和1556nm處進行多元線性回歸,誤差為1%。
11.檢測木纖維中的蠟和苯酚甲醛樹脂含量
采用反射模式,在1100~2500nm的范圍內,掃描木纖維、純蠟、經冷凍干燥的苯酚甲醛樹脂及含有蠟和苯酚甲醛樹脂的木纖維,發現纖維中的蠟在2250nm、2310nm和1725nm均有特征吸收,而樹脂則在1980nm處有特征吸收。
12.檢測絨毛漿中的吸水劑含量
采用反射模式,在1100~2500nm的范圍內,對吸水劑濃度為0.00%~44.9%的絨毛漿樣品進行掃描,在1752nm處標定,誤差為6%。
13.檢測涂布紙的涂布層
在1100~2500nm的范圍內,對涂料濃度為0~12%的涂布紙,利用光纖測量NIR反射光譜,在2316nm處標定,誤差為0.1%。但是還不能排除紙頁中無機物的影響。